Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 10(1): 17766, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-882928

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces severe pneumonia and is the cause of a worldwide pandemic. Coronaviruses, including SARS-CoV-2, have RNA proofreading enzymes in their genomes, resulting in fewer gene mutations than other RNA viruses. Nevertheless, variants of SARS-CoV-2 exist and may induce different symptoms; however, the factors and the impacts of these mutations are not well understood. We found that there is a bias to the mutations occurring in SARS-CoV-2 variants, with disproportionate mutation to uracil (U). These point mutations to U are mainly derived from cytosine (C), which is consistent with the substrate specificity of host RNA editing enzymes, APOBECs. We also found the point mutations which are consistent with other RNA editing enzymes, ADARs. For the C-to-U mutations, the context of the upstream uracil and downstream guanine from mutated position was found to be most prevalent. Further, the degree of increase of U in SARS-CoV-2 variants correlates with enhanced production of cytokines, such as TNF-α and IL-6, in cell lines when compared with stimulation by the ssRNA sequence of the isolated virus in Wuhan. Therefore, RNA editing is a factor for mutation bias in SARS-CoV-2 variants, which affects host inflammatory cytokines production.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , APOBEC Deaminases/metabolism , Adenosine Deaminase/metabolism , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Cell Line, Tumor , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Interleukin-6/metabolism , Pandemics , Phylogeny , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Point Mutation , RNA Editing , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL